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Design for Additive Manufacture A Mathematical Approach (@) (b) An Analogous Process

- Additive manufacture (AM) is a bottom-up manufacturing . A current tool available is topological . . Despite both processes in Figure 1 being three-
approach that constructs parts using computer-aided design optimisation. I\ — dimensional, the capabilities and constraints of plant  §
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(CAD). . With a subtractive mindset, it introduces ‘holes’ ] growth are mirrored in AM.
- AM gives rise to a greater design freedom compared to into the design space, generating organic-looking . Just as plant cells are strongly adhered to one
traditional subtractive methods (or "top-down” approaches). structures that resemble structures in nature. another, each layer of a part (the ‘cell’) depends on
« CAD adopts a subtractive manufacturing approach. . Gives rise to ‘bio-inspired design’ and, thus, my the one preceding it. &
= To exploit the greater design freedom AM has to offer, the research proposal: employing mathematical — In both cases, cellular/material level deformation
designer is required to think more creatively - Design for modelling techniques to revolutionise DfAM. generates deformation at the tissue/part level.
Additive Manufacture (DfAM). — Expanding the creative scope of design and « Drawing upon these analogies will generate a
- DfAM remains a fragmented, challenging process, but there inspiring new innovative ideas by visualising _ technique to visualise the dynamic evolution of a
. Figure 1: Two analogous processes. (a) presents a plant organ whose cross- ) . PN
are tools available to ease, or even overcome, these AM as a process of growth: a bottom-up section| consists of layers of adhered cells and|(b) presents the adhered layers desired part through a more familiar bottom-up
difficulties. process. of lines of extruded material that collectively form an arbitrary part. approach.
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From the Cellular Level... ...to the Tissue Level
Assuming each cell is subject to a turgor « An antisymmetric elongation of cells
pressure P, we can employ the Lockhart induces bending, producing an axial
equation!” to determine the relative length®! of,
. elongatlc.m rate (RER) of eac[;zr; cell wall ol(x, t) = (1 + K(t)f(x))(SlO(t),
segment in the cross-section X,
through x, as seen in Figure 2, with
o(T —Y), T >Y, f(x)=e-(x—xp).
RERcell -
0, <Y,  Assuming |kf| < 1, generates the

tissue-level RER(t) from RER

: ey : : cell
with extensibility ¢(x), axial tension T(X), Figure 2: A magnification of (a) presents a cross-section X of N cells, with 2 the tangent of the organ centre-line (pointing away from the tip), d the normal, e the binormal, xo the centroid, m the moment, and x -

and yield Y(x). an arbitrary point. A magnification of (b) presents a segment of length 6lo between two perpendicular cross-sections, with 61>0lo. A point (blue) on the centre-line has radius of curvature 1/k(t) and centre of RER oy (x,t) = 5l dt RER + d_tf-
curvature C, with k(t) the curvature of the centre-line at time t.
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The Bending Angle, A 9 = B, Potential Explorations ds

« Bending of an organ is initiated by a localised
hormone signal.
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« Suppose cells in the elongation zone (EZ)
experience a signal of magnitude Ag for s

time, travelling shootward with uniform speed
V =ply/c, B>1 (as seen in Figure 3).

. The length of cells exposed to the signal is Vts, H" HH Figure 3: (a) a hormone signal travelling shootward 3
and the bending ang|e[2] is calculated to be -~ ® with speed V for time ts, inducing bending A8 of the root
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