MATHEMATICALLY MODELLING THREE-DIMENSIONAL PLANT GROWTH FOR USE IN ADDITIVE MANUFACTURE

Amy Tansell¹ (*Email Address*: AXT673@student.bham.ac.uk)

¹EPSRC Centre for Doctoral Training in Topological Design, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK ²School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK ³Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK

-Plant Growth, a Biological Analogue

Design for Additive Manufacture

- A current tool available is topological approach that constructs parts using computer-aided design optimisation. (CAD). • With a *subtractive mindset*, it introduces 'holes' into the design space, generating organic-looking traditional subtractive methods (or "top-down" approaches). structures that resemble structures in nature. • Gives rise to 'bio-inspired design' and, thus, my \Rightarrow To exploit the greater design freedom AM has to offer, the research proposal: employing mathematical designer is required to think more creatively - Design for modelling techniques to revolutionise DfAM. Additive Manufacture (DfAM). \Rightarrow Expanding the creative scope of design and inspiring new innovative ideas by visualising are tools available to ease, or even overcome, these AM as a process of growth: a bottom-up difficulties. process.

- Additive manufacture (AM) is a bottom-up manufacturing • AM gives rise to a greater design freedom compared to • CAD adopts a *subtractive manufacturing approach*. • DfAM remains a fragmented, challenging process, but there

Underlying Mathematical Modelling Techniques

From the Cellular Level...

Assuming each cell is subject to a turgor pressure *P*, we can employ the **Lockhart** equation^[1] to determine the relative elongation rate (RER) of each cell wall segment in the cross-section $\Sigma^{[2]}$,

$$RER_{cell} = \begin{cases} \phi(T-Y), & T \ge Y, \\ 0, & T < Y, \end{cases}$$

with extensibility $\phi(\mathbf{x})$, axial tension T(\mathbf{x}), and yield $Y(\mathbf{x})$.

(a)

LONG

The Bending Angle, $\Delta \theta$

- Bending of an organ is initiated by a localised hormone signal.
- Suppose cells in the elongation zone (EZ) experience a signal of magnitude A_0 for t_s time, travelling shootward with uniform speed $V = \beta l_0 / c$, $\beta \gg 1$ (as seen in Figure 3).
- The length of cells exposed to the signal is $V t_s$, and the **bending angle**^[2] is calculated to be,

 $\Delta \theta = A_0 \left(\frac{l_0 t_s}{c} \right) \beta \log_e \beta = A_0 V t_s \log_e \beta.$

Supervisor: Dr Rosemary Dyson²

A Mathematical Approach

Figure 1: Two analogous processes. (a) presents a plant organ whose crosssection consists of layers of adhered cells and (b) presents the adhered layers of lines of extruded material that collectively form an arbitrary part.

(a)

Figure 2: A magnification of (a) presents a cross-section Σ of N cells, with \hat{z} the tangent of the organ centre-line (pointing away from the tip), d the normal, e the binormal, x_0 the centroid, m the moment, and xan arbitrary point. A magnification of (b) presents a segment of length δl_0 between two perpendicular cross-sections, with $\delta l > \delta l_0$. A point (blue) on the centre-line has radius of curvature $1/\kappa(t)$ and centre of curvature C, with $\kappa(t)$ the curvature of the centre-line at time t.

Phytologist, **202**:1212-1222, 2014.